Raman Spectroscopy and Microscopy Enable Life Science Discoveries
نویسنده
چکیده
The field of medical diagnostics will have tremendous potential gains in the near future due to Raman spectroscopy and microscopy. Applications include surface-enhanced Raman spectroscopy (SERS), signal enhancement targeted to specific analytes, coupling atomic force microscopy (AFM) systems and enabling tip-enhanced Raman spectroscopy (TERS) for nanoscale resolution. These technologies highlight great research developments that we anticipate will be transitioning sooner rather than later.
منابع مشابه
A RIGOROUS COMPARISON OF METHODS FOR MULTI-WALLED CARBON NANOTUBES PURIFICATION USING RAMAN SPECTROSCOPY
Multi-walled carbon nanotubes (MWNT’s) were synthesized using chemical vapor deposition (CVD) method in a fluidized bed reactor under the flow of methane and hydrogen gases. A Cobalt-molybdenum/magnesium oxide (Co-Mo/MgO) nanocatalyst was used as the catalyst of the process. The samples were analyzed using scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses. The effects of d...
متن کاملState of the Art Microanalysis Using Raman Microscopy
Introduction Raman spectroscopy is one of the most common techniques for materials identification and characterization. Based on inelastic scattering of a monochromatic excitation source, Raman measures vibrational, rotational and other low-frequency modes in a system. It’s not only characteristic for functional groups, but also sensitive to backbone and crystalline structures. Therefore, Raman...
متن کاملCarbon Nanotubes Synthesis by Chemical Vapor Deposition of Methane over Zn – Fe Mixed Catalysts Supported on Alumina
Carbon nanotubes were synthesized over a series of Zn-containing Fe/alumina catalysts by chemical vapor deposition method at two reaction temperatures of 850 and 950 °C using methane as a carbon source. Catalysts were synthesized by keeping Fe concentration constant and varying Zn concentration to study the effects of Zn. The catalysts were characterized using X – ray powder diffraction and N2 ...
متن کاملPolarization-Controlled Raman Microscopy and Nanoscopy.
Polarization imaging reveals unique characteristics of samples, such as molecular symmetry, orientation, or intermolecular interactions. Polarization techniques extend the ability of conventional spectroscopy to enable the characterization and identification of molecular species. In the early days of spectroscopy, it was considered that a set of polarizers placed in the illumination and the det...
متن کاملMolecular Diagnosis of Plasma Phenylalanine in Neonates with Phenylketonuria Disease Using Biological Sensors Based on Surface-Enhanced Raman Spectroscopy (SERS)
In this study, silver nanoparticles were chemically synthesized and deposited on glass substrates using a reducing agent of sucrose, at 50°C. Different characterizations including atomic force microscopy (AFM), field emission scanning electron microscopy (FESEM), and Raman spectroscopy were obtained to study silvery substrates. Then, the silvery substrates were used as the SERS substrates to de...
متن کامل